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A SPLITTER PLATE FOR THE PREVENTION OF VORTEX SHEDDING BEHIND 
FINITE CIRCULAR CYLINDERS IN UNIFORM CROSS FLOW 

This report presents a method of vortex shedding prevention from 
circular cylinders in uniform flow. 

The task was part of a general investigation of the motions of a 
mine case and attempts to partially prevent such motions, when the 
weapon is in its moored position and currents exist. 

All experimental work was performed in the Hydroballistics Tank 
of the U. S. Naval Ordnance Laboratory, White Oak. 

E. F. SCHREITER 
Captain, USN 
Commarder 
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LIST OF SYMBOLS 

A projected area of cylinder 

C_ coefficient of drag 

0 diameter of cylinder 

f frequency of vortex shedding 

Fn drag force 

h lateral vortex spacing in a Karman vortex street 

1 longitudinal vortex spacing in a Karman vortex street 

L length of cylinder 

L' height of splitter plate 

Ls-1 length of splitter plate in cylinder radii 

P stagnation point n (n ■ 1, 2, 3, 4 and 5) 

R Reynolds number 

S Strouhal number based on the diameter D and the velocity U 

u velocity component in x-direction 

Ü approach velocity 

v velocity component in y-direction 

V velocity of vortices relative to the fluid 

w complex potential 

x x-coordinate of vortex n n 

x x-coordinate of y   position max ■'max r 

y y-coordinate of vortex n n 

y maximum distance of the zero stream line from the x-axis max 

z complex function z(x,y) ■ x + iy where i ■ \-V 

IV 
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? conjugate of z 

r circulation of vortex 

K strength of vortex 

P density of fluid 

pc average density of cylinder 

PR 
P + Pc 

o ■  — PR    P 

m velocity potential 

♦ stream function 
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INTRODUCTION 

When a bluff body is brought into the flow of a real fluid, 
vortex shedding will occur once a certain Reynolds number is exceeded. 
For a circular cylinder this Reynolds number is about 50.  The fre- 
quency of shedding may be expressed as 

f»s-y (i) 

where the Strouhal number S is a function of the Reynolds number. 
Roshko (ref. 1) found 

0.212 (l  - ^fA   for 50 < R < 150 (2) 

and 

f'^) 0.212 (l - i~-) for 300 < R < 2,000 (3) 

while for the range of Reynolds numbers from 2,000 to 400,000 the 
Strouhal number is reported to lie between 0.195 and 0.210 (ref. 2). 
A further increase in Reynolds numbers shows a transition zone, 

4 x 105 < R < 3.5 x 106 (4) 

where the Strouhal number has baen observed to lie between 0.21 and 
0.46.  For Reynolds numbers larger than 3.5 y 10^ vortex shedding 
occurs with a Strouhal number of 0.27 (ref. 3). 

la 

/     / 
The magnitude  of  the   fluctuating  force,   the  so-called  Karman  force 

FK - i   CKpAir (5) 

where the coefficient. CK is usually assumed to be at least equal to 
1.0 (ref. 4).  Drescher (ref. 5) measured the unsteady pressure dis- 
tribution of cylinders in cross flow, verifying the order of magnitude 
of the just stated assumption. 

The detrimental effect the Karman force may have on engineering 
structures became apparent by the collapse of a large suspension 
bridge, which was subjected to a moderate, steady wind.  Other less 
dramatic and therefore less publicized failures are those of antennas, 
transmission lines-and smoke stacks.  The reoccurrence of such fail- 
ures is usually prevented by the installation of appropriate damping 
devices.  In certain engineering applications, however, a change of 
the vibrational system, e.g., additional damping, is not sufficient, 
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/  / 
and the total neutralization of the Karman forces by fluid dynamical 
means may be desirable. 

In the following it will be shown that vortex shedding may be 
prevented And therefore the fluctuating Karman forces may not occur, 
by the installation of a splitter plate.  The minimum dimensions of 
such a fin for a finite cylinder will be derived and compared with 
the experimentally determined optimum dimensions.  It should be 
realized, however, that a self-excited vibration may occur, e.g., on 
bodies with lift surfaces or with active mechanical systems, even 
though there is no periodic vortex shedding on the body which is 
initially steady.  Preventing vortex shedding will eliminate the 
"switching mechanism" (ref. 6) most often responsible for the occur- 
rence of the self-excited vibration of a body (other than airfoil 
shaped) in steady fluid flow. 

STABILITY ANALYSIS 

The underlying principle of the methol by which a splitter plate 
of sufficient length and infinitesimal thickness will tend to inhibit 
vortex shedding becomes plausible from a stability analysis carried 
out by L. Poppl (ref. 7) in 1913. 

Let the complex potential for two-dimensional flow be 

w(z) - «p(x,y) 4 i*(x,y) (6) 

Then the complex velocity is 

U - U - iv (7) 

where 
i 

u . ISP . it 
ax  ay (8) 

and 

v . M, _ll (9) Sy    ox y*' 

A closed circular stream line, with a radius equal to unity, repre- 
senting the cylinder in uniform flow is formed by the complex potential 

BH) wc « U (z + f) (10) 

while  the potential of vortex  1  and vortex 2  is 

(' ■Zl) 

w1 -   +  iK   log   (z -  z^ (11) 

dmd 
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w ■ - iK log i' - ^ (12) 

To retain the unit circle as a stream line (see fig. 1) when adding 
equations (10), (11) and (12), the images of vortices 1 and 2 (with 
respect to the circle) 

wll " - iK lo9 (z " zii) 

and 

w-- ■ + iK log 
(Z " Z22) 

(13) 

(14) 

must be included (Thomson's theorem).  Summinq equations (10) through 
(14) yields 

w» ufz +^)+ iK log 
(z - Zj.) (z - z22) 

(z - z2) (z - z^ 
(15) 

It should be pointed out,   that by choosing a cylinder with a unit 
radius,   all distances  are expressed  in radii. 

U 

V 

S 
Fig.   1     Nomenclature of Vortices 

According  to  Thomson's principle 

'11       T, (16) 

and 

'22        z. (17) 

so  that 
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X1^L 

and 

11,22       2      2 (18) 
Xl,2 + yl,2 

yl^L yll,22   v   2 , v   2 (19) 
Xl,2  + yl,2 

By setting^the propagation velocities of the vortices 1 and 2 equal 
to zero, Foppl (ref. 7) obtained 

and 

K - 2.uy1 , (i - -r-^r) (21) 

where 

-(1-^) 

r1.2 " VX1.22 + ^l7 (22) 

and 

1^ - r2 (23) 

since x^ equals X2 and y^ equals -y2 for the here assumed symmetrical 
case. 

Equation (20) gives the loci at which the two vortices must be, 
if they are stationary with respect to the cylinder (see fig. 2) . 
Equation (21) correlates the strength K of such a stationary vortex 
with its position behind the circular cylinder and the free-stream 
velocity U.  It is seen, that for a constant free-stream velocity 
the vortex strength increases as  the vortex pair mov^s away from the 
cylinder on the Foppl vortex path.  Rubach's flow visualization 
experiments (ref. 8) agree with the theory developed by Foppl. 

In order to determine whether equation (20) represents a stable 
equilibrium position of the vortices, vortices l^and 2 are displaced 
by a small distance from their position on the Foppl path; a return 
to their original location means that this position is one of stable 
equilibrium.  For » small symmetrical disturbance of the vortices 
(the x - axis being the axis of symmetry) Foppl (ref. 7) obtained 
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U 

ASYMPTOTE 

Fig.   2    Location of Vortices 

2 
^4  +   (Y  -   A)   ^7  +    (BX -   AY)   a   »   0 
dt2 dt 

(24) 

after replacing u by -rr, v by -r^, x by x + a and y by y + ß in the 

equations representing the propagation velocities of the vortices. 
Here 

3f x (4y2 + 1) 

- ff (4 + ^  + i^) 

(25) 

(26) 

X » 8x y U 

r (r  - 1) 
(27) 

and 
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r4  \   r2(r4 - l) / 
(28) 

The Indices on x, y and r have been omitted.  The general solution of 
equation (24) is 

a ■ C^-exp (^tj + C-exp (X tj (29) 

where 

1.2 
Y - A 

2 ± * V (Y -- A)  - 4 (BX - AY) (30) 

Stability  is  therefore proven,   since 

Y >  A 

and (31) 

(BX -   AY)   >   0 

A similar stability investigation, for the case for which the 
symmetry of the vortices with respect to the x - axis is not 
preserved, yields instability of the displaced vortices. 

The above considerations show that a pair of vortices may be at 
rest behind a circular cylinder in uniform flow.  If this is the 
case, they will position themselves according to equations (20) and 
(21), where the latter equation relates position with vortex strength 
and free-stream velocity.  When a small disturbance acts upon these 
vortices, the vortices will swing back to their original position on 
the Foppl path, if the disturbance is of such a manner that it 
results in a displacement of the vortices which is symmetrical with 
respect to the x - axis.  A disturbance producing an unsymmetrical 
displacement with respect to the x - axis results in instability of 
the vortices.  The typically staggered Karman vortex street is 
usually formed in this case. 

The reason why a splitter plate may prevent vortex shedding is 
now apparent:  Due to the image effect of the plate all vortex 
displacements will be symmetrical with respect to the x - axis (see 
fig. 3) . 

SPLITTER PLATE DIMENSIONS 

The question now arises what the optimum dimensions of such a 
splitter plate should be, in order to prevent vortex shedding.  The 
answer to this question is important to the practical application 
of this method of vortex shedding prevention. 

' 
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SPLITTER PLATE 

SPLITTER PLATE 

U 

•• x 

Fig. 3  Splitter Plate 

The optimum dimensions are the shortest length and the shortest 
height of the splitter plate which will prevent vortex shedding in 
the real fluid in which the cylinder moves with uniform velocity. 
A simple experimental trial and error type investigation would even- 
tually yield the optimum dimensions of the particular cylinder tested. 
It is desirable, however, to deduce from theoretical considerations 
the minimum plate dimensions defined below.  Such considerations will 
not only shorten the experimental investigation but will also yield 
valuable results of general character. 

The minimum fin length (Ls-1) which will insure the separation of 
the fluid moving with the vortices is given by the location of the 
rear stagnation point P3 (see fig, 4).  This minimum fin length which 
is defined for the non-viscous two dimensional flow field is shorter 
than the optimum fin length which was defined for the real, viscous 
flow in consideration.  The difference between the minimum fin length 
and the optimum fin length is not only caused by viscous effects; a 
finite displacement of vortex 1 or 2 in the downstream direction will 
require a corresponding increase in the minimum fin length to insure 
complete separation of the two fluid bodies moving with the circular 
zero stream line representing the cylinder  An expression for the 
distance Ls may now be derived (see also ref. 8).  Separating 
equation (15) into real and imaginary parts and comparing with 
equation (6) yields: 

mm 
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U 

Fig.   4     Location of  Stagnation  Points  Pn 

cp i'^v^'i y + Y! y - y 
arctan 

-arctan 

x  -  x. 

y - yi 

X    -    X, 

+  arctan 11 
x  -  x 11 

-   arcta n  J x - x11y 

(32) 

and 

i ■ ^v) +  K   log 
|(x-x1KU-y1)^(x-x1J^Uy11)2^ p ,2   / \2 

1     +(y+Yl Pn) 2   / \2 
+(y-y11 

(33) 

By performing  the  operations   indicated   in  equations   (8)   and   (9)   the 
velocities   in the  x -  and y -  directions  are   found  to be: 

u-u(l-lÄ^) +   K 
y - Y. y + y *     n + * : ^n 

(x-xi)2+(y-yi)2    (x-yii)2+(y+yii) 

y + y^ y - y  i" 'i       _ y     yii   . 

(x-xi) Y+yi)2    (x-xii)2+(y-yii) 

(34) 
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x - x 
2U x y  + K "1     4 11 

(x2+y2)2      (x-xi)2f(y-yi)2    (x-xii)2+(y+yii) 
(35) 

x - X x - X "    "11  

(x-xii)2+(y-yii)' 

Equating equation (34) to zero and setting 

y = 0 

and 

x = L s 

gives the required expression containing the term L , 

1 - 1   2i 
2   U 

11 

(Ls " xll): + y ii 
(L= -Xi) 

" Yi 

(36) 

To determine the value of Ls from (36) the location of the 

vortices and the ratio — must be known.  However, since a stationary 

vortex pair exists, only one vortex coordinate must be given or be 
assumed, as equation (20) determines the second coordinate and 

equation (21) then in turn determines the corresponding — ratio. 

Conversely, if the ratio of vortex strength to free-stream velocity 
is known, the position of stationary vortices may then be calculated 
with equations (20) and (21), and equation (36) may again be solved 
for Ls. 

From the above discussion it is apparent that, if the numerical 
value for Lg is to be obtained, either the vortex position or the 
ratio of vortex strength to free-stream velocity must be assumed.  In 
this article the following assumptions are considered: 

if 
1. The — ratio of  a  stationary vortex   is   the   same  as  that of  a 

single  vortex  in a  Karman  vortex  street.     This  assumption will  give 
K 

a   smaller   than actual —  ratio,   which   is   apparent   from  a   simple  energy 

consideration;   therefore, a   smaller   than  adequate   length  Ls will 
result. 

2. The stagnation points Pj^ and P2 coincide with the positions 
of boundary-layer separation of a circular cylinder in uniform flow 
(see   fig.   4).      In   this   case   the   splitter   plate   length will  vary 

mm 
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substantially, depending on whether a laminar or a turbulent boundary 
layer, giving early or delayed separation respectively, exists. 

3. The distance 2ymax (see fig. 4) is the same as the width of 
the wake behind a long circular cylinder of equivalent diameter. 

4. The vortices behind the cylinder have the same lateral spacing 
as the vortices in a staggered Karman vortex street. 

K 
For the first of the above-stated assumptions, a value of — for a 

/  / u 

single vortex of a Karman vortex street must be deduced.  The strength 
of a line vortex is 

K « ^ (37) 

where 

T « 2Vi-cotan ^ (38) 

Substituting the Karman stability value 

| » 0.281 (39) 

(ref. 9) into equation (38) gives 

T » 2-yJ2lV (40) 

Applying the Kronauer stability criterion, the velocity V may be 
expressed in terms of the velocity U.  For the vortex spacing ratio 
given in equation (39), a ratio of 

^ » 0.14 (4L) 

is obtained (ref. 10), which is the same value observed by von Karman 
in his original experiments supporting his theory (ref. 9).  The 
vortex strength to free-stream velocity may now be expressed as 

i-^^t ,42, 

The longitudinal vortex spacing i in a Karman vortex street is shown 
to be (Appendix A) 

I  '   0.86 | (43) 

or 

10 
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D 
2S 1 4 Vl - —  1   1    0.397 (44) 

depending on whether equation (41) is assumed to be correct or if one 
rel les only upon empirically found values for the drag coefficient 
and the Strouhal number.  The results obtained by equations (43) and 
(44) are in close agreement with each other and with the experimental 
evidence (Appendix A) .  For the Reynolds number range 2 x 104 < R < 
2 x 10^ the generally accepted values for a long circular cylinder 
are S = 0.195 and CQ = 1.20, resulting in the numerical value for t 
of 4.31D.  Since the radius of the cylinder was defined to be unity, 
t   equals 8.62 and the required ratio is 

-= 0.542 (45) 

Table 1 shows the resulting length Ls, the position of the 
vortices and stagnation points, the |j ratio and the coordinates of 
the maximum width of the zero stream line. 

The second assumption to be investigated is based on the 
geometrical similarity of the potential and real fluid flow fields. 
Terminating the Blasius power series with the fifth term, separation 

= 0) occurs at 9 = 110°, when potential flow velocity is assumed fdu 
\dy 
to exist (ref. 11).  Actually measured values of the separation 
points not only depend upon the flow regime but also upon the defini- 
tion of the point of separation.  Fage (ref. 12) shows that the 
visually observed separation of the boundary layer may take place as 
much as 10° downstream from the angle 9 determined by the point on 
the cylinder at which inflection of the velocity profile occurs 

In real fluids separation takes place further upstream in CM the laminar flow regime and further downstream in the turbulent flow 
regime, due to the particular pressure distribution formed.  For this 
and the above reasons a variety of values for 9 have been assumed and 
the corresponding flow field characteristics computed as shown in 
Table 1.  Since geometrical similarity is emphasized the visually 
observed separation point should be used when calculating the minimum 
fin length ir this case. 

The third assumption compares the wake width of the real fluid 
with the maximum width of the zero stream line of the potential flow 
field.  For the specific parameters the reader is again referred to 
Table 1.  Based on Roshko's result (ref. 13) that the wake Strouhal 
number for circular cylinders is 0.16, the wake width in a Reynolds 
number range of 2 x 104 to 2 x 10^ is 1.2 diameters.  Above the criti- 
cal Reynolds number the wake is found to be 0.5 diameter  wide. 

Tne fourth assumption proposes the same lateral vortex spacing of 
the real, staggered Karman vortex street and the two vortices behind 

11 
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the cylinder.  Using the mean values for t   as obtained from equations 
(43) and (44) by substituting the coefficients 

S = 0.195 1.20   for 2 x 104 < R < 2 x 105 

and 

0. 370 0.35   for R * 10 

// 
the y - coordinates for the vortex positions on the Foppl path become 
y^ = 1.21 and y^ » 0.67 for the above-indicated cases, respectively. 

The second dimension of the splitter plate L' may be estimated by 
relating the decrease in the coefficient of drag of a finite cylinder 
to the decrease in vortex length parallel to the axis of the cylinder 
(Appendix A) : 

L' = 
CD (finite L/D) 

'D (infinite L/D) 
(46) 

DISCUSSION 

Inspection of Table 1 shows that assumptions 2 and 4 result in 
similar flow fields not only when a laminar but also when a turbulent 
boundary layer exists.  Assumptions 1 and 3 also result in flow fields 
having parameters of approximately the same magnitude; here it is 
noticed that the values obtained by assumption 1 lie between those 
obtained by assumption 3 which vary according to the type of existing 
boundary layer. 

Experiments performed with water as a medium support the theo- 
retical results as obtained with assumptions 2 and 4.  A cylinder with 
ai L/D ratio of 5.15 and a density ratio DR equal to 1.85 was towed at 
different speeds in a large tank and its motions filmed (see fig. 5). 
For towing speeds for which the Reynolds number based on the cylinder 
diameter was below the critical, a splitter plate of length 3D corres- 
ponding to Ls equal to 7 was sufficient to eliminate all motions 
induced by the vortex shedding, while test runs with a fin of length 
2D (equivalent to Ls = 5) showed the typical oscillating motions of a 
bare cylinder.  While the 3D fin stayed aligned with the direction of 
flow (all fins were rigidly attached to the cylinder) , the 2D fin 
supported an oscillation of the cylinder around its longitudinal axis. 
For velocities for which the Reynolds numbers were well above the 
critical, a splitter plate of 1.5D (Ls ■ 4.0) was sufficient to 
suppress all vortex induced motions.  The above theoretical consid- 
erations tend to give a less than necessary splitter plate length 
rather than the exact or even a longer than necessary length.  The 
reason for this was already discussed.  The experiments were« performed 
in the new NOL Hydroballistics Tank (ref. 22) . 

13 
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Fig. 5  Test Arrangement 

It shou..d be pointed out  that the observation of the motion of 
the cylinder is not a direct observation of the vortex shedding and 
its prevention by a splitter plate, but rather an observation of the 
reaction of a complex, self-excitable vibrational system when vortex 
shedding has been inhibited to various degrees by different splitter 
plates.  Experimental evidence based on flow visualization should 
therefore be obtained.  Towing tests were also performed using 
different cable lengths, changing the natural frequency of the 
pendulum-like system (see fig. 5).  In this manner it was assured 
that the natural frequency and the vortex shedding frequency 
(possibly reduced to a finite value due to the splitter plate 
according to reference 14) were of such magnitudes that the typical 
self-excited vibration with large amplitudes would have occurred. 
Meier-Windhorst (ref. 15) shows that the frequency range for which 
the large amplitudes occur is strongly dependent upon the density 
ratio PR, becoming wider as PR approaches 2.  The same important 
trend was noticed by Glass (ref. 16), again supporting the validity 
of a deduction of the flow field in view of vortex shedding from the 
observations of the motion of the cylinder. 

The above-described tests also indicated that the other minimum 
dimension of the splitter plate is L' » 0.9L for subcritical flow 
and L' ■ L for velocities where the Reynolds number exceeds the 
critical, as was expected from equation (46) in conjunction with the 
drag data of circular cylinders having the indicated slenderness 
ratio (e.g., ref. 17). 

14 
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APPENDIX A 

KARMAN VORTICES BEHIND BLUFF BODIES 

The longitudinal spacing of Karman vortices due to a submerged 
bluff body in uniform flow may be reduced by combining generally 
accepted empirical data with the results of von Karman's vortex 
street and drag theories.  The following plausible assumptions are 
made: 

Assurption A-l:  The submerged body is of uniform cross section 
and has a large enough slenderness ratio so that a two-dimensional 
flow analysis is justified. 

Assumption A-2:  A regular Karman vortex street is generated by 
the uniform motion of the submerged bluff body. 

Assumption A-3: The drag force experienced by the submerged body 
is only due to the generated vortex street and not due to the viscous 
forces acting directly on the body. 

Let the velocity of the object in motion be U and the velocity of 
the shed vortices be V (see fig. A-l).  The shedding frequency 

U 

-5 
/  / 

v~) -r 

-L_0 
Fig.   A-l    Karman Vortex Street 

f  is; 

U-V (A-l) 

From direct  experimental  observation: 

'-^ (A-2) 

The Strouhal number S as a function of the Reynolds number has been 
determined for plates and circular cylinders by various investigators 
(ref. 18, 1, 2, 19 and 3).  Equating the frequencies given by 
equations (A-l) and (A-2) yields: 

i-S  s (A-3) 
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If the velocity of the vortex street V is known, equation {A-3) may 
direct; '  be solved for the required longitudinal vortex spacing I   in 
terms of the free-stream velocity U and the characteristic width D of 
the body.  The vortex velocity V can only be measured by flow visual- 
ization, by hot-wire methods or by similar techniques.  Such 
measurements, which are usually quite cumbersome to perform, may then, 
of course, yield directly the vortex spacing.  However, the ratio 

— can be expressed as a function of I,   D, and the coefficient of drag 

Cjy  as follows:  von Karman (ref. 9) showed, by equating the drag 
force acting on the body to the change of momentum of the generated 
infinite vortex street, that 

?D- [pr(ü- 2V) r + p^r] (A-4) 

With  the assumptions A-2  and A-3  equation   (A-4)   may be rewritten  in 
the  following form  (ref.   17): 

-D-   2[0 794 -fj -  0.314 ®% (A-5) 

Since 

see, for  example, reference   18, 

to   |0.794^|.     Equation   (A-5)   becomes: 

V 
u 

CDD 

1.588 I 

(A-6) 

is negligible when compared 

(A-7) 

Substituting the above velocity ratio into equation (A-3) yields 

2Sr   ^  0.397 (A-8) 

The alternative minus sign in front of the radical in equation (A-8) 
was eliminated, since for flows below the critical Reynolds number all 
observed vortex streets due to bluff bodies are wider than the width 
of the body, and for flows above the critical Reynolds number, the 
lateral vortex street dimension approaches that of the width of the 
body. 

A simple method of deducing t as a function of S and D only, 
suggests itself from the work of Bearman (ref. 10) .  By writing the 
Kronauer stability criterion in the form 

A-2 
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(A-9) 
V 
— ■ const. 

h    V Bearman derived the following relationship between y  and —. 

-    , nh  /v   -A  • ^ "h /  , nh  . , nh  TTh\   ,. ln» 2 cosh -r- " IT; ~ 2I 3inh T- (^osh -7— smh -7— - -7-1    (A-10) 

For the von Karman stability condition, (7 ■ 0.281) the velocity 
V ratio — becomes 0.14.  This is the identical value observed by 

von Karman (ref. 9) in the experiments to support his theory.  Sub- 
stituting this value into equation {A-3) yields 

I   - 0.86 "I (A-ll) 

Therefore,   by assuming Kronauer's   stability  criterion  to  hold  true, 
one of  the  variables of equation   (A-8)   is eliminated. 

Table  A-l  shows  the vortex  spacing behind  circular  cylinders. 
Directly measured  values   for  the   longitudinal  vortex   spacing are 
given by  Fage  and  Johanson   (ref.    18) ;   for  the  Reynolds  number  range 
2  x  10^   to   2  x   105  a value  of t   equal   to 4.27  D was  observed.     In 
this  range  equation   (A-8)   approximates   the  vortex  spacing better 
than  equation   (A-ll).     The  two  unknown parameters   in  equation  (A-3) 

V are  the Strouhal  number  S and the velocity ratio —.     While 

equation   (A-ll)   relies only upon one  experimentally determined param- 
eter  to express t.   as a  function of D,   namely, the Strouhal  number S, 
equation   (A-8)   relies on two experimentally determined parameters, 
namely, the  coefficient of drag  CQ and  the Strouhal  number  S.     It  is 
interesting   to note that  the value of  the dimensionless product of 
CßS   is  nearly  constant  over  a wide  Reynolds  number  range   (see 
Table A-l) . 

When a   finite  bluff body  is  brought  into uniform  flow,   so-called 
"down-wash"   will  occur  at  the ends  of  this  body due   to  the  low back 
pressure.      Clearly,   the   flow  is   now  three dimensional   and  assumption 
A-l   is  therefore  disregarded.      In  view of assumptions  A-2  and A-3 
and neglecting additionai three dimensional effects,   the  length L  in 
equation   (A-4)   must now be  replaced by  the modified   length L' .     The 
ratio of  the modified length L'    (the  length of the vortices)   and  the 
actual   length of  the body L  is  obtained  from  the drag  data: 

C   (finite L/D) 
L'   '  CD( infinite L/D)   

L (A-12) 

For  the   case  of  a  circular   cylinder,   the  coefficients  ol:  drag   for 
the   infinite   (I:00)   and  finite   (1:5)   cylinders  are  as   follows   (ref. 17): 

A-3 
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4 5 for   2x10     <R<2xl0 

The modified  length L'   for   this   Reynolds  number  range  and  the given 
diameter   to  length ratio becomes  L'   ■   0.625   L.      For   the   circular 
cylinder  of  the  given slenderness  ratio,the values   shown  in 
reference 17 indicate  that   for   4   x   102 <   R <   2   x   10^   a  minimum modi- 
fied   length  L'    (min.)   occurs   at   R =   4  x   10^  and   is   equal   to 0.88L; 
for   Reynolds  numbers  above  the   critical  number,   L'   seems   to equal L. 

Most  experiments  investigating  the  spacing  ratio of   the Karman 
vortex  street  show a much  larger value  for y than  that  predicted by 

von Karman.     In other words,   experimental  evidence   seems   to question 
assumption A-2.      Hooker   (ref.    20)   discusses  the action of viscosity 
in  increasing   the  spacing  ratio;  while the  centers  of  vorticity 
appear   to  remain  closely  in  the von  Karman  arrangement,the  centers of 
rotation  of  the  eddies   (which  are  observed)   move  outwards.     Hooker 
also points out  that  the  longitudinal  spacing  remains   surprisingly 
constant,   so  that  the observed   increase  in  the  apparent  spacing ratio 
is due  to  the   increasing  lateral  distance between  the   centers of 
rotation of the  created eddies. 

Assumption  A-3  is  supported  by  the work  of  Schiller   and Linke 
(ref.   21).     This  investigation  shows   that  at  a  Reynolds  number  of 
5,000  the  viscous effects  on  cylinders account  for   5  percent of  the 
total  drag,   while at  a  Reynolds  number of 40,000   this   value has 
decreased   to   2  percent. 

Of  interest   is  the   investigation  by von  Karman   in which he  shows 
t\\at by  fixing  all vortices  except  one vortex pair,   this   free vortex 
pair will  assume  the considerably  larger  spacing  ratio of -h =  0.36. 

This  seems  to  explain  the observed   shorter  longitudinal   spacing i   for 
the  first  3  or  4 vortices   immediately after  the  vortex  shedding body. 
The  correcting   factor  by which I  must be multiplied   (see  equation 
(A-8)   or   (A-12))   to give  the   longitudinal  vortex   spacing   immediately 
behind  the body   is 0.78. 

A-5 
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